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TROPOMI methane observations provide a unique opportunity 
to improve constraints on emission estimates
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TROPOMI CH4 Observations (May 2018 – March 2019)



The spatial and temporal distribution of methane emissions is 
uncertain
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Total Methane Emissions: 550 Tg/a

3 Maasakkers et al. (2019)



Significant errors exist in prior emission inventories

4 Maasakkers et al. (2016)



Observations of methane reflect emissions, atmospheric 
transport, and atmospheric chemistry

emissions (!) observations (")



Forward models replicate transport and chemistry to describe 
the dependence of observations on estimated emissions

emissions (!", $") observations (%, $&)

Forward Model '
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Inversions describe the dependence of emissions on 
observations

emissions (!) observations (")emissions (!#, %#) observations (", %&)



A Bayesian inversion accounts for these errors by maximizing the 
probability of the emissions given the observations
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A Bayesian inversion accounts for these errors by maximizing the 
probability of the emissions given the observations
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minimize cost function
1. by the adjoint
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While the adjoint efficiently computes the derivative, it does not 
support analytic solution of errors or extensive sensitivity testing
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provide analytic posterior error

support extensive sensitivity testing

find the true minimum 
of the cost function

adjoint solutions do not:

Source: Brasseur and Jacob
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An analytic solution to the cost function minimum exists when 
the forward model is linear
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modeled observations (F(#$) + ')

forward model

improved emissions estimate ( (#, *+)

minimize cost function

modeled observations (K#$ + ')

• improved emission estimate
(x = x/ + 0SK2S345 y − Kx/ + c

• improved error estimate
0S = S/45 + K2S345K

45

• information content
A = 0SK2S345K
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observations (;, +<)



Past inversions optimized emissions on a coarse grid, but denser 
satellite observations support higher resolution inversions
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modeled observations (K"# + %)

improved emissions estimate ( &", ())

forward model

minimize cost function

Maasakkers et al. (2019)
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Increasing inversion resolution increases computational cost, 
which is limited by the number of grid boxes optimized

modeled observations (K"# + %)

• optimal emission estimate
&x = x) + *SK,S-./ y − Kx) + c

• optimal error estimate
*S = S)./ + K,S-./K

./

• information content
A = *SK,S-./K

optimal emissions estimate ( &", 56)

forward model

minimize cost function
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n+1 model runs

emissions estimate ("7, 67)

observations (8, 69)



+ single cell perturbation perturbed observations

forward model

The Jacobian K represents the sensitivity of observations to 
emissions: ! = #$ + & with # = '!

'$
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forward model
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n perturbations, 
n model runs14
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4° x 5 ° : ~16,000 core-hours
1,000 grid cells, 8 cores, 2 hours per simulation-year

1° x 1.25 ° : ~86,000,000 core-hours 
16,000 grid cells, 32 cores, 7 days per simulation-year

2° x 2.5 ° : ~3,000,000 core-hours 
4,000 grid cells, 32 cores, 24 hours per simulation-year

The computational cost of an analytic Bayesian inversion is 
limited by the resolution



How can analytic inversions:
i. increase resolution;
ii. minimize computational cost;  
iii. and maintain information content?
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Reduced-Rank Jacobian Construction
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I. REDUCED-RANK INVERSIONS
(BOUSSEREZ ET AL. 2018)

II. REDUCED-RANK JACOBIANS



Reducing the dimension of the state space from n to p << n 
can reduce the computational cost of an analytic inversion

Bocquet et al. (2011)

!⍵

ℝ$ ℝ%
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subjective
computationally 

expensive

There are multiple methods of discretely clustering grid cells to 
reduce the state space dimension

Bocquet et al. (2011)19 Wecht et al. (2014)



Known information about the emission-observation system can 
be used to find an optimal clustering analytically

Averaging Kernel : ! = #$%
#% = &((!, (*, +)

M
or

e 
C

on
st

ra
in

ed
L

es
s 

C
on

st
ra

in
ed

20

-$%
-%



An eigendecomposition of the averaging kernel A gives the 
patterns of information in the emission-observation system
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An eigendecomposition of A QDOF gives the patterns of 
information in the emission-observation system
An eigendecomposition of A QDOF HP gives the patterns of 
information in the emission-observation system



The inversion can be solved in the directions given by the 
eigenvectors in a reduced-dimension or reduced-rank space
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! = #∗# #∗
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The inversion can be solved in the directions given by the 
eigenvectors in a reduced-dimension or reduced-rank space

! = #∗# #∗

#

dimension n
rank k

dimension n 
rank > k

dimension k
rank k
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The full rank approximation reproduces the full rank solution and 
converges to the true solution as k à n
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1.0

0.0

The “reduced-rank inversion” maximizes the information content 
of the posterior solution



Reduced-Rank Jacobian Construction
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Reduced-rank inversions decrease computational 
cost without significant loss of information 
content in the posterior solution.



Increasing inversion resolution increases computational cost, 
which is limited by the number of grid boxes optimized

modeled observations (K"# + %)

• optimal emission estimate
&x = x) + *SK,S-./ y − Kx) + c

• optimal error estimate
*S = S)./ + K,S-./K

./

• information content
A = *SK,S-./K

optimal emissions estimate ( &", 56)

forward model

minimize cost function

27

n+1 model runs

emissions estimate ("7, 67)

observations (8, 69)



Reduced-Rank Jacobian Construction
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Reduced-rank inversions decrease computational 
cost without significant loss of information 
content in the posterior solution.

Next steps:

I. Reduce the computational cost of constructing 
Jacobians for analytic Bayesian inversions.



Reduced-Rank Jacobian Construction
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I. REDUCED-RANK INVERSIONS
(BOUSSEREZ ET AL. 2018)

II. REDUCED-RANK JACOBIANS



The approximated posterior implicitly uses a reduced-rank 
Jacobian

! = #∗# #∗

#

dimension n
rank k

dimension n 
rank > k

dimension k
rank k
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+ single cell perturbation perturbed observations

forward model

The Jacobian K represents the sensitivity of observations to 
emissions: ! = #$ + & with # = '!

'$
emissions estimate modeled observations

forward model

Δx

forward model

Δy

n perturbations, 
n model runs31



+ single cell perturbation perturbed observations

forward model

Perturbing eigenvectors would require k < n model runs and 
yield a reduced-rank Jacobian

emissions estimate modeled observations

forward model

forward model

Δx Δy

k perturbations, 
k model runs32



Because the eigenvectors include a contribution from the 
model, constructing the Jacobian is an iterative process
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I. Initialize the 
Jacobian K0 [m x n]

II. Perturb k
eigenvectors and find 

the reduced dimension 
Jacobian K⍵ [m x k]

III. Calculate the full 
dimension Jacobian K1 

[m x n]



The Jacobian can be initialized using a mass-balance 
approach
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The initial estimate produces sufficiently similar eigenpairs
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Because the eigenvectors include a contribution from the 
model, constructing the Jacobian is an iterative process
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I. Initialize the 
Jacobian K0 [m x n]

II. Perturb k
eigenvectors and find 

the reduced dimension 
Jacobian K⍵ [m x k]

III. Calculate the full 
dimension Jacobian K1 

[m x n]



A single iteration significantly improves the estimated Jacobian
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A single iteration with 200 perturbations improves the eigenpairs
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A single iteration with 400 perturbations improves the eigenpairs
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A single iteration with 600 perturbations improves the eigenpairs
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Iterating improves the Jacobian estimate
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The resulting posterior approximates the true posterior with 
fewer than half the model runs
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The resulting posterior approximates the true posterior best in 
areas with high information content
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Estimated Posterior (400, 400) Estimated Averaging Kernel (400, 400)



Reduced-Rank Jacobian Construction
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Reduced-rank Jacobians optimize methane 
emissions in areas with high information content 
while significantly decreasing computational cost.

Next steps:

I. Define and justify an optimal iteration scheme, 
including convergence criteria;

II. Quantify the error associated with the reduced-rank 
Jacobian and the resulting posterior solutions.


